A Cauchy–Davenport Type Result for Arbitrary Regular Graphs
نویسندگان
چکیده
منابع مشابه
A Cauchy-davenport Type Result for Arbitrary Regular Graphs
Motivated by the Cauchy-Davenport theorem for sumsets, and its interpretation in terms of Cayley graphs, we prove the following main result: There is a universal constant � > 0 such that, if G is a connected, regular graph on n vertices, then either every pair of vertices can be connected by a path of length at most three, or the number of pairs of such vertices is at least 1 + � times the numb...
متن کاملA result on decompositions of regular graphs
Su, X.-Y., A result on decompositions of regular graphs, Discrete Mathematics 105 (1992) 323-326. We prove that for any connected graph G and any integer r which is a common multiple of the degrees of the vertices in G, there exists a connected, r-regular, and G-decomposable graph H such that x(H) = x(G) and o(H) = w(G), where x and w are the chromatic number and the clique number, respectively...
متن کاملA generalization of Villarreal's result for unmixed tripartite graphs
In this paper we give a characterization of unmixed tripartite graphs under certain conditions which is a generalization of a result of Villarreal on bipartite graphs. For bipartite graphs two different characterizations were given by Ravindra and Villarreal. We show that these two characterizations imply each other.
متن کاملEmbedding arbitrary finite simple graphs into small strongly regular graphs
It is well-known that any nite simple graph ? is an induced sub-graph of some exponentially larger strongly regular graph ? (e.g. 2, 8]). No general polynomial-size construction has been known. For a given-nite simple graph ? on v vertices we present a construction of a strongly regular graph ? on O(v 4) vertices that contains ? as its induced sub-graph. A discussion is included of the size of ...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Integers
سال: 2011
ISSN: 1867-0652
DOI: 10.1515/integ.2011.019